xmlns:fb='http://www.facebook.com/2008/fbml'> Warung Hikmah: MOTOR DAN GENERATOR

1 Apr 2014

MOTOR DAN GENERATOR




A.  Pengertian Motor
Motor listrik termasuk kedalam kategori mesin listrik dinamis dan merupakan sebuah perangkat elektromagnetik yang mengubah energi listrik menjadi energi mekanik. Energi mekanik ini digunakan untuk, misalnya, memutar impeller pompa, fan atau blower, menggerakan kompresor, mengangkat bahan, dll di industri dan digunakan juga pada peralatan listrik rumah tangga (seperti: mixer, bor listrik,kipas angin).
Motor listrik kadangkala disebut “kuda kerja” nya industri, sebab diperkirakan bahwa motor-motor menggunakan sekitar 70% beban listrik total di industri. Mekanisme kerja untuk seluruh jenis motor listrik secara umum sama (Gambar 1), yaitu:
Ø  Arus listrik dalam medan magnet akan memberikan gaya.
Ø  Jika kawat yang membawa arus dibengkokkan menjadi sebuah lingkaran/loop, maka kedua sisi loop, yaitu pada sudut kanan medan magnet, akan mendapatkan gaya pada arah yang berlawanan.
Ø   Pasangan gaya menghasilkan tenaga putar/ torsi untuk memutar kumparan.
Ø   Motor-motor memiliki beberapa loop pada dinamonya untuk memberikan tenaga putaran yang lebih seragam dan medan magnetnya dihasilkan oleh susunan elektromagnetik yang disebut kumparan medan.
Dalam memahami sebuah motor listrik, penting untuk mengerti apa yang dimaksud dengan beban motor. Beban mengacu kepada keluaran tenaga putar/torsi sesuai dengan kecepatan yang diperlukan. Beban umumnya dapat dikategorikan kedalam tiga kelompok:
ü  Beban torsi konstan, adalah beban dimana permintaan keluaran energinya bervariasi dengan kecepatan operasinya, namun torsi nya tidak bervariasi. Contoh beban dengan torsi konstan adalah conveyors, rotary kilns, dan pompa displacement konstan.
ü  Beban dengan torsi variabel, adalah beban dengan torsi yang bervariasi dengan kecepatan operasi. Contoh beban dengan torsi variabel adalah pompa sentrifugal dan fan (torsi bervariasi sebagai kwadrat kecepatan).
ü  Beban dengan energi konstan, adalah beban dengan permintaan torsi yang berubah dan berbanding terbalik dengan kecepatan. Contoh untuk beban dengan daya konstan adalah peralatan-peralatan mesin.
B. Jenis Motor Listrik
Bagian ini menjelaskan tentang dua jenis utama motor listrik: motor DC dan motor AC. Motor tersebut diklasifikasikan berdasarkan pasokan input, konstruksi, dan mekanisme operasi, dan dijelaskan lebih lanjut dalam bagan dibawah ini.

1.   Motor DC/Arus Searah
Motor DC/arus searah, sebagaimana namanya, menggunakan arus langsung yang tidak langsung/direct-unidirectional. Motor DC digunakan pada penggunaan khusus dimana diperlukan penyalaan torsi yang tinggi atau percepatan yang tetap untuk kisaran kecepatan yang luas.
Gambar 3 memperlihatkan sebuah motor DC yang memiliki tiga komponen utama:
Ø Kutub medan. Secara sederhada digambarkan bahwa interaksi dua kutub magnet akan menyebabkan perputaran pada motor DC. Motor DC memiliki kutub medan yang stasioner dan dinamo yang menggerakan bearing pada ruang diantara kutub medan. Motor DC sederhana memiliki dua kutub medan: kutub utara dan kutub selatan. Garis magnetik energi membesar melintasi bukaan diantara kutub-kutub dari utara ke selatan. Untuk motor yang lebih besar atau lebih komplek terdapat satu atau lebih elektromagnet. Elektromagnet menerima listrik dari sumber daya dari luar sebagai penyedia struktur medan.
Ø Dinamo. Bila arus masuk menuju dinamo, maka arus ini akan menjadi elektromagnet. Dinamo yang berbentuk silinder, dihubungkan ke as penggerak untuk menggerakan beban. Untuk kasus motor DC yang kecil, dinamo berputar dalam medan magnet yang dibentuk oleh kutub-kutub, sampai kutub utara dan selatan magnet berganti lokasi. Jika hal ini terjadi, arusnya berbalik untuk merubah kutub-kutub utara dan selatan dinamo.
Ø Kommutator. Komponen ini terutama ditemukan dalam motor DC. Kegunaannya adalah untuk membalikan arah arus listrik dalam dinamo. Kommutator juga membantu dalam transmisi arus antara dinamo dan sumber daya.
Gambar 3. Motor DC.
Keuntungan utama motor DC adalah kecepatannya mudah dikendalikan dan tidak mempengaruhi kualitas pasokan daya. Motor DC ini dapat dikendalikan dengan mengatur:
Ø  Tegangan dinamo – meningkatkan tegangan dinamo akan meningkatkan kecepatan.
Ø  Arus medan – menurunkan arus medan akan meningkatkan kecepatan.
Motor DC tersedia dalam banyak ukuran, namun penggunaannya pada umumnya dibatasi untuk beberapa penggunaan berkecepatan rendah, penggunaan daya rendah hingga sedang, seperti peralatan mesin dan rolling mills, sebab sering terjadi masalah dengan perubahan arah arus listrik mekanis pada ukuran yang lebih besar. Juga, motor tersebut dibatasi hanya untuk penggunaan di area yang bersih dan tidak berbahaya sebab resiko percikan api pada sikatnya. Motor DC juga relatif mahal dibanding motor AC.
Hubungan antara kecepatan, flux medan dan tegangan dinamo ditunjukkan dalam persamaan berikut:

Gaya elektromagnetik:

Torsi:
Dimana:
E =gaya elektromagnetik yang dikembangkan pada terminal dinamo (volt)
Φ = flux medan yang berbanding lurus dengan arus medan
N = kecepatan dalam RPM (putaran per menit)
T = torsi electromagnetik
Ia = arus dinamo
K = konstanta persamaan

Jenis-Jenis Motor DC/Arus Searah
a.    Motor DC sumber daya terpisah/ Separately Excited, Jika arus medan dipasok dari sumber terpisah maka disebut motor DC sumber daya terpisah/separately excited.
b.     Motor DC sumber daya sendiri/ Self Excited: motor shunt. Pada motor shunt, gulungan medan (medan shunt) disambungkan secara paralel dengan gulungan dinamo (A) seperti diperlihatkan dalam gambar 4. Oleh karena itu total arus dalam jalur merupakan penjumlahan arus medan dan arus dinamo.
Gambar 4. Karakteristik Motor DC Shunt.
Berikut tentang kecepatan motor shunt (E.T.E., 1997):
*      Kecepatan pada prakteknya konstan tidak tergantung pada beban (hingga torsi tertentu setelah kecepatannya berkurang, lihat Gambar 4) dan oleh karena itu cocok untuk penggunaan komersial dengan beban awal yang rendah, seperti peralatan mesin.
*       Kecepatan dapat dikendalikan dengan cara memasang tahanan dalam susunan seri dengan dinamo (kecepatan berkurang) atau dengan memasang tahanan pada arus medan (kecepatan bertambah).
c.    Motor DC daya sendiri: motor seri. Dalam motor seri, gulungan medan (medan shunt) dihubungkan secara seri dengan gulungan dinamo (A) seperti ditunjukkan dalam gambar 5. Oleh karena itu, arus medan sama dengan arus dinamo.
Berikut tentang kecepatan motor seri (Rodwell International Corporation, 1997; L.M. Photonics Ltd, 2002):
v  Kecepatan dibatasi pada 5000 RPM.
v  Harus dihindarkan menjalankan motor seri tanpa ada beban sebab motor akan mempercepat tanpa terkendali.
Motor-motor seri cocok untuk penggunaan yang memerlukan torque penyalaan awal yang tinggi, seperti derek dan alat pengangkat hoist (lihat Gambar 5).
Gambar 5. Karakteristik Motor DC Seri.
d.     Motor DC Kompon/Gabungan.
Motor Kompon DC merupakan gabungan motor seri dan shunt. Pada motor kompon, gulungan medan (medan shunt) dihubungkan secara paralel dan seri dengan gulungan dinamo (A) seperti yang ditunjukkan dalam gambar 6. Sehingga, motor kompon memiliki torque penyalaan awal yang bagus dan kecepatan yang stabil. Makin tinggi persentase penggabungan (yakni persentase gulungan medan yang dihubungkan secara seri), makin tinggi pula torque penyalaan awal yang dapat ditangani oleh motor ini. Contoh, penggabungan 40-50% menjadikan motor ini cocok untuk alat pengangkat hoist dan derek, sedangkan motor kompon yang standar (12%) tidak cocok (myElectrical, 2005).
Gambar 6. Karakteristik Motor DC Kompon.

2.  Motor AC/Arus Bolak-Balik
Motor AC/arus bolak-balik menggunakan arus listrik yang membalikkan arahnya secara teratur pada rentang waktu tertentu. Motor listrik AC memiliki dua buah bagian dasar listrik: "stator" dan "rotor" seperti ditunjukkan dalam Gambar 7.
Stator merupakan komponen listrik statis. Rotor merupakan komponen listrik berputar untuk memutar as motor. Keuntungan utama motor DC terhadap motor AC adalah bahwa kecepatan motor AC lebih sulit dikendalikan. Untuk mengatasi kerugian ini, motor AC dapat dilengkapi dengan penggerak frekwensi variabel untuk meningkatkan kendali kecepatan sekaligus menurunkan dayanya. Motor induksi merupakan motor yang paling populer di industri karena kehandalannya dan lebih mudah perawatannya. Motor induksi AC cukup murah (harganya setengah atau kurang dari harga sebuah motor DC) dan juga memberikan rasio daya terhadap berat yang cukup tinggi (sekitar dua kali motor DC).
Jenis-Jenis Motor AC/Arus Bolak-Balik
a.   Motor sinkron
Motor sinkron adalah motor AC yang bekerja pada kecepatan tetap pada sistim frekwensi tertentu. Motor ini memerlukan arus searah (DC) untuk pembangkitan daya dan memiliki torque awal yang rendah, dan oleh karena itu motor sinkron cocok untuk penggunaan awal dengan beban rendah, seperti kompresor udara, perubahan frekwensi dan generator motor. Motor sinkron mampu untuk memperbaiki faktor daya sistim, sehingga sering digunakan pada sistim yang menggunakan banyak listrik.
Komponen utama motor sinkron adalah (Gambar 7):
Ø  Rotor, Perbedaan utama antara motor sinkron dengan motor induksi adalah bahwa rotor mesin sinkron berjalan pada kecepatan yang sama dengan perputaran medan magnet. Hal ini memungkinkan sebab medan magnit rotor tidak lagi terinduksi. Rotor memiliki magnet permanen atau arus DC-excited, yang dipaksa untuk mengunci pada posisi tertentu bila dihadapkan dengan medan magnet lainnya.
Ø  Stator, Stator menghasilkan medan magnet berputar yang sebanding dengan frekwensi yang dipasok.
Motor ini berputar pada kecepatan sinkron, yang diberikan oleh persamaan berikut (Parekh, 2003):

Ns = 120 f / P

Dimana:
f = frekwensi dari pasokan frekwensi
P= jumlah kutub
Gambar 7. Motor Sinkron.
b.   Motor induksi
Motor induksi merupakan motor yang paling umum digunakan pada berbagai peralatan industri. Popularitasnya karena rancangannya yang sederhana, murah dan mudah didapat, dan dapat langsung disambungkan ke sumber daya AC.
Komponen Motor induksi memiliki dua komponen listrik utama (Gambar 8):
*    Rotor. Motor induksi menggunakan dua jenis rotor. Rotor kandang tupai terdiri dari batang penghantar tebal yang dilekatkan dalam petak-petak slots paralel. Batang-batang tersebut diberi hubungan pendek pada kedua ujungnya dengan alat cincin hubungan pendek.
Lingkaran rotor yang memiliki gulungan tiga fase, lapisan ganda dan terdistribusi. Dibuat melingkar sebanyak kutub stator. Tiga fase digulungi kawat pada bagian dalamnya dan ujung yang lainnya dihubungkan ke cincin kecil yang dipasang pada batang as dengan sikat yang menempel padanya.
*      Stator. Stator dibuat dari sejumlah stampings dengan slots untuk membawa gulungan tiga fase. Gulungan ini dilingkarkan untuk sejumlah kutub yang tertentu. Gulungan diberi spasi geometri sebesar 120 derajat
Motor induksi dapat diklasifikasikan menjadi dua kelompok utama (Parekh, 2003):
ü  Motor induksi satu fase. Motor ini hanya memiliki satu gulungan stator, beroperasi dengan pasokan daya satu fase, memiliki sebuah rotor kandang tupai, dan memerlukan sebuah alat untuk menghidupkan motornya. Sejauh ini motor ini merupakan jenis motor yang paling umum digunakan dalam peralatan rumah tangga, seperti kipas angin, mesin cuci dan pengering pakaian, dan untuk penggunaan hingga 3 sampai 4 Hp.
ü   Motor induksi tiga fase. Medan magnet yang berputar dihasilkan oleh pasokan tiga fase yang seimbang. Motor tersebut memiliki kemampuan daya yang tinggi, dapat memiliki kandang tupai atau gulungan rotor (walaupun 90% memiliki rotor kandang tupai); dan penyalaan sendiri. Diperkirakan bahwa sekitar 70% motor di industri menggunakan jenis ini, sebagai contoh, pompa, kompresor, belt conveyor, jaringan listrik , dan grinder. Tersedia dalam ukuran 1/3 hingga ratusan Hp.
Gambar 8. Motor Induksi.
Motor induksi bekerja sebagai berikut, Listrik dipasok ke stator yang akan menghasilkan medan magnet. Medan magnet ini bergerak dengan kecepatan sinkron disekitar rotor. Arus rotor menghasilkan medan magnet kedua, yang berusaha untuk melawan medan magnet stator, yang menyebabkan rotor berputar. Walaupun begitu, didalam prakteknya motor tidak pernah bekerja pada kecepatan sinkron namun pada “kecepatan dasar” yang lebih rendah. Terjadinya perbedaan antara dua kecepatan tersebut disebabkan adanya “slip/geseran” yang meningkat dengan meningkatnya beban. Slip hanya terjadi pada motor induksi. Untuk menghindari slip dapat dipasang sebuah cincin geser/ slip ring, dan motor tersebut dinamakan “motor cincin geser/slip ring motor”.
Persamaan berikut dapat digunakan untuk menghitung persentase slip/geseran(Parekh, 2003):

Dimana:
Ns = kecepatan sinkron dalam RPM
Nb = kecepatan dasar dalam RPM

Hubungan antara beban, kecepatan dan torsi
Gambar 9. Grafik Torsi vs Kecepatan Motor Induksi.
Gambar 9 menunjukan grafik torsi vs kecepatan motor induksi AC tiga fase dengan arus yang sudah ditetapkan. Bila motor (Parekh, 2003):
ü  Mulai menyala ternyata terdapat arus nyala awal yang tinggi dan torsi yang rendah (“pull-up torque”).
ü  Mencapai 80% kecepatan penuh, torsi berada pada tingkat tertinggi (“pull-out torque”) dan arus mulai turun.
ü  Pada kecepatan penuh, atau kecepatan sinkron.


C. Pengertian Generator

Generator listrik adalah sebuah alat yang memproduksi energi listrik dari sumber energi mekanikal, biasanya dengan menggunakan induksi elektromagnetik. Proses ini dikenal sebagai pembangkit listrik. Walau generator dan motor punya banyak kesamaan, tapi motor adalah alat yang mengubah energi listrik menjadi energi mekanik. Generator mendorong muatan listrik untuk bergerak melalui sebuah sirkuit listrik eksternal, tapi generator tidak menciptakan listrik yang sudah ada di dalam kabel lilitannya. Hal ini bisa dianalogikan dengan sebuah pompa air, yang menciptakan aliran air tapi tidak menciptakan air di dalamnya. Sumber enegi mekanik bisa berupa resiprokat maupun turbin mesin uap, air yang jatuh melakui sebuah turbin maupun kincir air, mesin pembakaran dalam, turbin angin, engkol tangan, energi surya atau matahari, udara yang dimampatkan, atau apapun sumber energi mekanik yang lain.
Sebelum hubungan antara magnet dan listrik ditemukan, generator menggunakan prinsip elektrostatik. Mesin Wimshurst menggunakan induksi elektrostatik atau "influence". Generator Van de Graaff menggunakan satu dari dua mekanisme:
Ø  Penyaluran muatan dari elektroda voltase-tinggi
Ø  Muatan yang dibuat oleh efek triboelectric menggunakan pemisahan dua insulator.
Kini dalam rangkaian generator DC memiliki tiga lilitan magnet, yaitu:
·         lilitan magnet utama
·         lilitan magnet bantu (interpole)
·          lilitan magnet kompensasi
Generator elektrostatik tidak efisien dan berguna hanya untuk eksperimen saintifik yang membutuhkan voltase tinggi.
D. Generator DC
Generator DC merupakan sebuah perangkat Motor listrik yang mengubah energi mekanis menjadi energi listrik. Generator DC menghasilkan arus DC / arus searah.
1.  Konstruksi Generator DC
Pada umumnya generator DC dibuat dengan menggunakan magnet permanent dengan 4-kutub rotor, regulator tegangan digital, proteksi terhadap beban lebih, starter eksitasi, penyearah, bearing dan rumah generator atau casis, serta bagian rotor. Gambar 1 menunjukkan gambar potongan melintang konstruksi generator DC.


Gambar 1. Konstruksi Generator DC

Generator DC terdiri dua bagian, yaitu stator, yaitu bagian mesin DC yang diam, dan bagian rotor, yaitu bagian mesin DC yang berputar. Bagian stator terdiri dari: rangka motor, belitan stator, sikat arang, bearing dan terminal box. Sedangkan bagian rotor terdiri dari: komutator, belitan rotor, kipas rotor dan poros rotor.

Bagian yang harus menjadi perhatian untuk perawatan secara rutin adalah sikat arang yang akan memendek dan harus diganti secara periodic / berkala. Komutator harus dibersihkan dari kotoran sisa sikat arang yang menempel dan serbuk arang yang mengisi celah-celah komutator, gunakan amplas halus untuk membersihkan noda bekas sikat arang.
2.  Prinsip kerja Generator DC
Pembangkitan tegangan induksi oleh sebuah generator diperoleh melalui dua cara:
ü  Dengan menggunakan cincin-seret, menghasilkan tegangan induksi bolak-balik.
ü  Dengan menggunakan komutator, menghasilkan tegangan DC.
Proses pembangkitan tegangan tegangan induksi tersebut dapat dilihat pada Gambar 2 dan Gambar 3.


Gambar 2. Pembangkitan Tegangan Induksi.
Jika rotor diputar dalam pengaruh medan magnet, maka akan terjadi perpotongan medan magnet oleh lilitan kawat pada rotor. Hal ini akan menimbulkan tegangan induksi. Tegangan induksi terbesar terjadi saat rotor menempati posisi seperti Gambar 2 (a) dan (c). Pada posisi ini terjadi perpotongan medan magnet secara maksimum oleh penghantar. Sedangkan posisi jangkar pada Gambar 2.(b), akan menghasilkan tegangan induksi nol. Hal ini karena tidak adanya perpotongan medan magnet dengan penghantar pada jangkar atau rotor. Daerah medan ini disebut daerah netral.


Gambar 3. Tegangan Rotor yang dihasilkan melalui cincin-seret dan komutator.
Jika ujung belitan rotor dihubungkan dengan slip-ring berupa dua cincin (disebut juga dengan cincin seret), seperti ditunjukkan Gambar 3.(1), maka dihasilkan listrik AC (arus bolak-balik) berbentuk sinusoidal. Bila ujung belitan rotor dihubungkan dengan komutator satu cincin Gambar 3.(2) dengan dua belahan, maka dihasilkan listrik DC dengan dua gelombang positip.
·         Rotor dari generator DC akan menghasilkan tegangan induksi bolak-balik. Sebuah komutator berfungsi sebagai penyearah tegangan AC.
·         Besarnya tegangan yang dihasilkan oleh sebuah generator DC, sebanding dengan banyaknya putaran dan besarnya arus eksitasi (arus penguat medan).
3.  Jenis-jenis Generator DC
1.   Generator Penguat Terpisah
Pada generator penguat terpisah, belitan eksitasi (penguat eksitasi) tidak terhubung menjadi satu dengan rotor. Terdapat dua jenis generator penguat terpisah, yaitu:
a.    Penguat elektromagnetik (Gambar 8.a)
b.    Magnet permanent / magnet tetap (Gambar 8.b)


Gambar 8. Generator Penguat Terpisah.
Energi listrik yang dihasilkan oleh penguat elektromagnet dapat diatur melalui pengaturan tegangan eksitasi. Pengaturan dapat dilakukan secara elektronik atau magnetik. Generator ini bekerja dengan catu daya DC dari luar yang dimasukkan melalui belitan F1-F2.
Penguat dengan magnet permanen menghasilkan tegangan output generator yang konstan dari terminal rotor A1-A2. Karakteristik tegangan V relatif konstan dan tegangan akan menurun sedikit ketika arus beban I dinaikkan mendekati harga nominalnya.


2.   Generator Shunt
Pada generator shunt, penguat eksitasi E1-E2 terhubung paralel dengan rotor (A1-A2). Tegangan awal generator diperoleh dari magnet sisa yang terdapat pada medan magnet
stator. Rotor berputar dalam medan magnet yang lemah, dihasilkan tegangan yang akan memperkuat medan magnet stator, sampai dicapai tegangan nominalnya. Pengaturan arus eksitasi yang melewati belitan shunt E1-E2 diatur oleh tahanan geser. Makin besar arus eksitasi shunt, makin besar medan penguat shunt yang dihasilkan, dan tegangan terminal meningkat sampai mencapai tegangan nominalnya. Diagram rangkaian generator shunt dapat dilihat pada Gambar 10.


Gambar 10. Diagram Rangkaian Generator Shunt
Jika generator shunt tidak mendapatkan arus eksitasi, maka sisa megnetisasi tidak akan ada, atau jika belitan eksitasi salah sambung atau jika arah putaran terbalik, atau rotor terhubung-singkat, maka tidak akan ada tegangan atau energi listrik yang dihasilkan oleh generator tersebut.
3.    Generator Kompon
Generator kompon mempunyai dua penguat eksitasi pada inti kutub utama yang sama. Satu penguat eksitasi merupakan penguat shunt, dan lainnya merupakan penguat seri. Diagram rangkaian generator kompon ditunjukkan pada Gambar 12. Pengatur medan magnet (D1-D2) terletak di depan belitan shunt.


Gambar 12. Diagram Rangkaian Generator Kompon


E.  Generator AC (sinkron)
1.  Konstruksi Generator AC
Pada dasarnya konstruksi dari generator sinkron adalah sama dengan konstruksi motor sinkron, dan secara umum biasa disebut mesin sinkron. Ada dua struktur kumparan pada mesin sinkron yang merupakan dasar kerja dari mesin tersebut, yaitu kumparan yang mengalirkan penguatan DC (membangkitkan medan magnet, biasa disebut sistem eksitasi) dan sebuah kumparan (biasa disebut jangkar) tempat dibangkitkannya GGL arus bola-balik.
Hampir semua mesin sinkron mempunyai belitan GGL berupa stator yang diam dan struktur medan magnit berputar sebagai rotor. Kumparan DC pada struktur medan yang berputar dihubungkan pada sumber DC luar melaui slipring dan sikat arang, tetapi ada juga yang tidak mempergunakan sikat arang yaitu sistem “brushless excitation”.
a.   Bentuk Rotor
Untuk medan rotor yang digunakan tergantung pada kecepatan mesin, mesin dengan kecepatan tinggi seperti turbo generator mempunyai bentuk silinder gambar 3a, sedangkan mesin dengan kecepatan rendah seperti Hydroelectric atau Generator Listrik Diesel mempunyai rotor kutub menonjol gambar 3b.


Gambar 3a. Bentuk Rotor kutub silinder.


Gambar 3b. Bentuk Rotor kutub menonjol.
b.    Bentuk Stator
Stator dari Mesin Sinkron terbuat dari bahan ferromagnetik , seperti telah dibahas di sini, yang berbentuk laminasi untuk mengurangi rugi-rugi arus pusar. Dengan inti ferromagnetik yang bagus berarti permebilitas dan resistivitas dari bahan tinggi.


Gambar 4. Inti Stator dan Alur pada Stator
Gambar 4 memperlihatkan alur stator tempat kumparan jangkar. Belitan jangkar (stator) yang umum digunakan oleh mesin sinkron tiga fasa, ada dua tipe yaitu :
o   Belitan satu lapis (Single Layer Winding).
o   Belitan berlapis ganda (Double Layer Winding).
c.    Bentuk Stator Satu Lapis
Gambar 5 memperlihatkan belitan satu lapis, karena hanya ada satu sisi lilitan didalam masing-masing alur. Bila kumparan tiga fasa dimulai pada Sa, Sb, dan Sc dan berakhir di Fa, Fb, dan Fc bisa disatukan dalam dua cara, yaitu hubungan bintang dan segitiga. Antar kumparan fasa dipisahkan sebesar 120 derajat listrik atau 60 derajat mekanik, satu siklus GGL penuh akan dihasilkan bila rotor dengan 4 kutub berputar 180 derajat mekanis. Satu siklus GGL penuh menunjukkan 360 derajat listrik, adapun hubungan antara sudut rotor mekanis α_mek dan sudut listrik α_lis, adalah :

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEg8knNBN5uCqG1w2UMYhNljBFnLXM76I38tF_J2q9r7tAKWw8FlbKIfUIHstrCHdij6H81CKyQmp0QTtzhsuD0pCziLCCrecacH1UMvbZCLjRgpp3zKC5uOt5Acg-qycPksTzHbgV5V_wY/s320/1.png

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjkyejcGnckDdPl3lXYSah6aB698dx_r-11S69agoEmd2qmo9CUw0WqCkAwXkZYrIDc33tDbXnm7MXVQ5MVtFMl0AIQD0bsGkSDpvRK5ldeZle7mzC4dr893S3rBbUE4dstQ_cOeXYfyVU/s320/gb+5.jpg
Gambar 5. Belitan Satu Lapis Generator Sinkron Tiga Fasa.

Contoh:
Sebuah generator Sinkron mempunyai 12 kutub. Berapa sudut mekanis ditunjukkan dengan 180 derajat listrik.

Jawaban:
Sudut mekanis antara kutub utara dan kutub selatan adalah:
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhxHcJIT_O2M0SX8hSVDcbKDs_ltdWMgir7Yji_I7WdPQpEakAZvtmI38bjvCs3ZwKOEiWEblcqVYfCeaG11-xaSg93czxvBqTRJmD0Yl3bE_v_3X8yhWQXV5IpwitMJNgwNrd7uN2CgHI/s320/2.png

Ini menunjukkan 180 derajat listrik
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhcNLAmjbw-s11o2DFbS6Pi8E6iIHJrSFxRTU0gAVZiQTN8qwkUo-wG7UnPdxn4RuuviTrdtxHRTde2ckvezItI8YswqmiEjYk9OzKKF1tfsEq5n4qbvp8_xdpG_uOk_7j66xXIL7hN5q0/s320/3.png

atau bisa juga secara langsung, yaitu:
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhBrCTVxM51f-YSeOpusUMftHfRKO8qJKwmDa9W1DXAKQwqwpHVPGbwlmIvk9wxFwGGg-088juiMpnyGtaFm-ElSuFaCnFz4b-5Yo8WazwltLTCSrE5TIELkJnSi9GK0vWMC2P3mhTLzWQ/s320/4.png

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEizU0CBQTX4Boh2U1Y8R1-e9NRpaqNHipqUIAcGpoTZjeTqsUmM3_eatC1a0HJXzqc-wUoj3Tg2SVnbiuS0Cr101OSkZlHcR2fWy3qv9u-F8VqR-i5qYFg5upklnfDSgC9bSORmZOxVjdk/s320/gb+6.jpg
Gambar 6. Urutan fasa ABC.
Untuk menunjukkan arah dari putaran rotor gambar 6. (searah jarum jam), urutan fasa yang dihasilkan oleh suplai tiga fasa adalah ABC, dengan demikian tegangan maksimum pertama terjadi dalam fasa A, diikuti fasa B, dan kemudian fasa C.
Kebalikan arah putaran dihasilkan dalam urutan ACB, atau urutan fasa negatif, sedangkan urutan fasa ABC disebut urutan fasa positif. Jadi ggl yang dibangkitkan sistem tiga fasa secara simetris adalah:

EA = EA ∟ 0° volt
EB = EB ∟ -120° volt
EC = EC ∟ -240° volt
2.    Prinsip-Prinsip Kerja Generator Sinkron
Setelah kita membahas mengenai konstruksi dari suatu generator sinkron, maka artikel kali ini akan membahas mengenai prinsip kerja dari suatu generator sinkron. Yang akan menjadi kerangka bahasan kali ini adalah pengoperasian generator sinkron dalam kondisi berbeban, tanpa beban, menentukan reaktansi dan resistansi dengan melakukan percobaan tanpa beban (beban nol), percobaan hubung-singkat dan percobaan resistansi jangkar.
Seperti telah dijelaskan pada artikel-artikel sebelumnya, bahwa kecepatan rotor dan frekuensi dari tegangan yang dibangkitkan oleh suatu generator sinkron berbanding lurus. Gambar 1 akan memperlihatkan prinsip kerja dari sebuah generator AC dengan dua kutub, dan dimisalkan hanya memiliki satu lilitan yang terbuat dari dua penghantar secara seri, yaitu penghantar a dan a’.
Untuk dapat lebih mudah memahami, silahkan lihat animasi prinsip kerja generator.


https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEh22Ja4hYIyfRuivvWgieXk5bT78OTpJQwg485vTTXFh-tdfNrYkuIkTtcxB9i8-oHy6tBYNqrvfNlGE_s3q3bng0u0_CJiP3Rs2G088mHEqRSd0SmniTjGtCRcoohgwFl1N_JrHdHcmDs/s320/gb+1.jpg
Gambar 1. Diagram Generator AC Satu Phasa Dua Kutub.
Lilitan seperti disebutkan diatas disebut “Lilitan terpusat”, dalam generator sebenarnya terdiri dari banyak lilitan dalam masing-masing fasa yang terdistribusi pada masing-masing alur stator dan disebut “Lilitan terdistribusi”. Diasumsikan rotor berputar searah jarum jam, maka fluks medan rotor bergerak sesuai lilitan jangkar. Satu putaran rotor dalam satu detik menghasilkan satu siklus per detik atau 1 Hertz (Hz).
Bila kecepatannya 60 Revolution per menit (Rpm), frekuensi 1 Hz. Maka untuk frekuensi f = 60 Hz, rotor harus berputar 3600 Rpm. Untuk kecepatan rotor n rpm, rotor harus berputar pada kecepatan n/60 revolution per detik (rps). Bila rotor mempunyai lebih dari 1 pasang kutub, misalnya P kutub maka masing-masing revolution dari rotor menginduksikan P/2 siklus tegangan dalam lilitan stator. Frekuensi dari tegangan induksi sebagai sebuah fungsi dari kecepatan rotor, dan diformulasikan dengan:

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEghzbNZbwuZ06VhscvWGidPtL7NYX6oYUP9Oltcj9EcUJMPmDhtHgXSb_HqTyBWjl11Pa9kNxw3Cr8mOGAks8BO1I2cE0pghdFLIn7fPqSM8HROrr7-ieEo-uzbMVFJJ04NUCaggaT3a5w/s320/1.png

Untuk generator sinkron tiga fasa, harus ada tiga belitan yang masing-masing terpisah sebesar 120 derajat listrik dalam ruang sekitar keliling celah udara seperti diperlihatkan pada kumparan a – a’, b – b’ dan c – c’ pada gambar 2. Masing-masing lilitan akan menghasilkan gelombang Fluksi sinus satu dengan lainnya berbeda 120 derajat listrik. Dalam keadaan seimbang besarnya fluksi sesaat :

ΦA = Φm. Sin ωt
ΦB = Φm. Sin ( ωt – 120° )
ΦC = Φm. Sin ( ωt – 240° )

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhHS9s1TJuLYnD0z9W-NcoEGgvli_xl5CuxGr8cMpQ1GmyjrPH6YA6s_NhjRXQmjKIFqyd2oax29A4J5dpexVlVAVWbNOROBUMpuVd-Ix2Ym6q5wFQvFtU8CJXHYNVcOkjwbMa50Khw_SM/s320/gb+2.jpg
Gambar 2. Diagram Generator AC Tiga Fasa Dua Kutub
Besarnya fluks resultan adalah jumlah vektor ketiga fluks tersebut adalah:
ΦT = ΦA +ΦB + ΦC, yang merupakan fungsi tempat (Φ) dan waktu (t), maka besar- besarnya fluks total adalah:
ΦT = Φm.Sin ωt + Φm.Sin(ωt – 120°) + Φm. Sin(ωt– 240°). Cos (φ – 240°)
Dengan memakai transformasi trigonometri dari :

Sin α . Cos β = ½.Sin (α + β) + ½ Sin (α + β ),

maka dari persamaan diatas diperoleh :

ΦT = ½.Φm. Sin (ωt +φ )+ ½.Φm. Sin (ωt – φ) + ½.Φm. Sin ( ωt + φ – 240° )+ ½.Φm. Sin (ωt – φ) +½.Φm. Sin (ωt + φ – 480°)
Dari persamaan diatas, bila diuraikan maka suku kesatu, ketiga, dan kelimaakan silang menghilangkan. Dengan demikian dari persamaan akan didapatfluksi total sebesar,
ΦT = ¾ Φm. Sin ( ωt - Φ ) Weber .

Jadi medan resultan merupakan medan putar dengan modulus 3/2 Φ dengan sudut putar sebesar ω. Maka besarnya tegangan masing-masing fasa adalah :

E maks = Bm. ℓ. ω r Volt

dimana :
Bm = Kerapatan Fluks maksimum kumparan medan rotor (Tesla)
ℓ = Panjang masing-masing lilitan dalam medan magnetik (Weber)
ω = Kecepatan sudut dari rotor (rad/s)
r = Radius dari jangkar (meter)


Comments
0 Comments

Tidak ada komentar:

Posting Komentar